您好、欢迎来到现金彩票网!
当前位置:彩之网 > 飞机上升限度 >

飞机失速

发布时间:2019-07-02 22:43 来源:未知 编辑:admin

  声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

  飞机失速(Stall)是指飞机或机翼迎角大于最大升力迎角时工作的情况,其特点为气流分离、操纵失效。失速本质上并非指飞机速度不足。

  机机翼在攻角超过某个临界值后,举力系数(见举力)随攻角增大而减小的现象。当失速时,飞机会产生失控的俯冲颠簸运动,发动机发生振动,驾驶员感到操纵异常。

  简单来说,飞机失速意味着机翼上产生的升力突然减少,从而导致飞机的飞行高度快速降低。注意失速并不意味著引擎停止了工作或是飞机失去了前进的速度。

  1、当飞机前进时产生的升力小于飞机所受的重力时飞机就会下降.或摔机.即飞机迎角大于临界角,出现大迎角失速

  补充:攻角(Angle of attack): 也叫迎角。即翼弦与自由流/相对风流的夹角。

  超过临界迎角(或临界攻角,多数飞机为18°,即气流开始与失速机翼分离的角度)后,翼型上表面边界层将发生严重的分离,升力急剧下降而不能保持正常飞行的现象,叫失速。

  失速本质上并非指飞机速度不足,而是指流经翼面的气流由于逆压梯度与粘性作用发生分离,造成上翼面分离处压力上升,因而致使升力骤然下降。

  飞机失速的原因是机翼在大迎角下出现了气流分离.而左右两翼因种种原因(如侧滑、或构造有微小的不对称).气流分离并不对称,因此就会出现下述失速特性:

  1.飞机抖振,驾驶杆、脚蹬抖动,机身摇晃,飞机结构振动。飞机接近失速时.已开始呈现抖动.这就是失速的警告信号。随着迎角的进一步增大.抖振、摇晃进一步加剧,飞机加速进入失速。作机动动作进入失速的抖振、摇晃要比平飞进入失速更为猛烈。

  2.失速成迎角接近临界迎角的飞机,当其加速失速时.法向过载或法向加速度会突然中止。

  3.出现迅速而非指令性的转动,如机翼下坠,机头上仰.俯仰振荡,偏机头等等至于出现哪种运动,视飞机型别各不相同。如歼五飞机由于超过失速迎角以后的升力系数下降和缓,飞行员对失速下坠没有明显感觉,但对紧接着出现的坡度,偏转和下俯,会看得很清楚。

  4.飞行速度迅速下降。但如果是向下的机动,如半滚倒转进入失速飞行速度并不致很快减慢。

  5.无助力装置的飞机,会感到操纵杆舵变轻。操纵开始失常。失速的特性及现象。

  在流体动力学中,失速是指翼型气动攻角(Angle of attack)增加到一定程度(达到临界值)时,翼型所产生的升力(lift force)突然减小的一种状态。翼型气动迎角超过该临界值之前,翼型升力是随迎角增加而递增的;但是迎角超过该临界值后,翼型升力将递减。

  由於大部份有关失速的讨论都与航空有关,以下集中论述失速与飞机(固定翼飞机)的关系。简单来说,飞机失速意味着机翼上产生的升力突然减少,从而导致飞机飞行高度快速降低。注意失速并不意味著引擎停止了工作或是飞机失去了前进的速度。

  对于失速的防范与应对,并不是让你无时无刻都处于一种高度紧张状态,由无知而产生的紧张不仅于事无补,反而会导致更坏的结果。因此,了解容易产生失速的基本条件和时机非常重要。

  低速飞行时飞行员对于失速具有一定的警觉性,这种警觉是非常重要的,因为低速飞行阶段,飞机机动能力弱,很容易产生由姿态改变而引发迎角的急剧增加。这一点其实很好理解,由于速度的减小导致向心力的不足,使得轨迹的改变不能跟随姿态的变化,导致迎角的急剧增加,从而超越失速迎角引发失速。对于低速失速的防范和警觉,可以使我们有效地避免失速的发生,但有时由于飞行员专注于其他环境和飞机状态的变化,会使他的这种警觉性降低,从而产生无意识的错误操控。因此,在低速飞行时飞行员要防止注意力高度集中、单打一,要时刻关注飞机迎角和状态的变化,敏锐地感知飞机状态的异常,一旦发现飞机由进入失速的趋势,要及时终止机动。

  危险天气条件下的飞行,对飞行员的驾驶技术提出了更高的要求,侧风、强对流、风切变等天气情况,会使飞机的气动力发生显著的变化,这些变化从一定程度上影响了飞行员的操控,有些天气条件下尽管能够完成飞行,但需要特殊的技术,如大侧风着陆,需要飞行员采用位置、航向、坡度的综合修正,而且在着陆后迅速改变驾驶动作,对飞行员的驾驶技术提出了特殊的要求。由于不能胜任气象条件,在操控上出现重大失误,是引发的失速事故的一个重要原因。

  动力不足是导致飞机失速的重要原因,一方面由于动力不足速度难以增加,飞机的机动能力较弱,容易产生由于操作失误所引发的失速;另一方面,弱动力飞行时很容易产生速度的急剧衰减和能量的急剧损耗,在飞行员没有察觉的情况下进入低速飞行状态。为此,飞行员需要加强弱动力飞行的理论学习和模拟训练,掌握弱动力飞行的特点:(弱动力飞行理论为我独创,相关知识请阅读附文)

  3. 进场阶段控制轨迹,而不是试图改变飞机的下沉趋势,避免不自主的拉杆,使飞机进入失速状态

  飞机在起降阶段,一方面处于低速飞行状态,容易产生失速,另一方面由于放下了起落装置,改变了飞机的构型和气动外形,使得飞机的操纵性和稳定性降低,特别是在转弯阶段和离陆、降落阶段,飞行员的操控频繁复杂,容易产生状态的突然变化,从而引发失速。

  应对的方法是确保飞机在安全的起降速度范围内飞行,合理利用技术修正侧风和偏差,避免粗猛的操控动作。

  另外在起降阶段如遇到突发情况,确保安全是首要原则,要努力将故障控制在跑道上,如果飞机离陆则要迅速安全地控制飞机着陆,避免危机状态下长时间在空中停留。

  非常规构型是指在飞机结构、气动外形和重量等方面,不同于常规状态的飞机构型。其中特别需要强调的是飞机重心、重量的特殊变化。4月29日的波音747失速事故,很重要的原因就是飞机重载起飞。重载起飞、非正常重心起飞,飞机的操控特点与常规起飞完全不同,需要特殊的驾驶技术,没有经过特殊训练的飞行员是难以胜任的,另外,这种特殊构型下的起飞,对气象条件要求也比较严,不能按照一般的起降条件进行掌握,在大风、强对流天气下进行重载起飞是非常危险的。从4月29日的飞行事故现场看,当时机场处于强对流天气,侧风较大、气流颠簸,这是引发事故的另一个重要原因。

  从飞行控制的角度讲,起降阶段是操作频繁复杂、操纵精度要求较高的“高增益”操纵阶段,“高增益”操纵的一大特点是容易产生人机耦合,由此产生的震荡会严重威胁飞行的安全。

  预防人机耦合震荡要求飞行员熟悉和适应飞机和飞控系统操控特点,避免急剧、粗猛、下意识和反复无常的操控。一旦产生人机耦合震荡,不要试图消除每一次震荡,而应按照人机耦合的处置方法,以缓慢连续的单向操控加以克服。

  判明失速后,应立即推杆减小迎角,恢复升力。待飞机获得速度后,即可转入正常飞行。

  提力(举力或升力)不足无法支撑飞机的状态。应提升速度或缩小AOA(ADF中AOA的解释:攻角的略称,指风向与机翼弦线的夹角。注意,角度过大会使机翼无法提升扬力而导致失速)导致的失速可以恢复。

  飞机在平飞的时候,机翼产生的升力和飞机的重力是平衡的,举力的方向总是垂直于机翼中心平面的。

  而在大角度爬升或俯冲的时候,飞机的机翼下部产生的举力不再和重力方向一致,飞机失去了部分举力,造成了飞机下坠。

  战斗机在特技飞行时,也不会时间过长的大角度爬升或俯冲,必须很快的转入平飞。特技飞行中的倒飞,是完全抛弃了举力,而是相反的受力,也是表演一会。大型飞机不仅是不能长时间作这样的动作,就是过急的拐弯,飞机翼倾斜过度,产生的后果和这一样。

  失速理论教育不能仅停留在航理层面,飞行员在初始教育阶段对这些理论已经有了足够的了解。我认为需要加强的是对失速案例的进一步分析,对所飞机种的失速相关理论的进一步了解,以及对失速处置技术理论的进一步深化。因为只有通过案例分析,才能使我们真正了解失速的易发性、复杂性和危险性,只有了解了所飞机种的失速特点,才能有针对性的进行失速防范和应对。只有结合环境、条件、飞机和自身技术特点,才能真正掌握有效的处置失

  失速毕竟是一种平时飞行中难以遇到的特殊情况,对于失速的了解和应对技术的掌握,想要靠实际飞行来提高是难以实现的。现代模拟技术对于各种特殊情况的模拟已经达到了相当逼真的程度。通过模拟训练,可以使飞行员通过反复训练掌握失速特点和处置方法。

  失速的警觉性不是让飞行员时时设防处处警觉,而是真正了解可能发生失速的时机,有针对性的提高对失速的防范意识。在容易产生失速的条件下,要保持高度的警觉和正确的操控。在处置突发的危险状态时,要针对环境和飞机特点,采用正确的决策和方法。

  在处置失速险情时,很重要的一点是对危险的发展趋势和可能结果有一个明确的判断,我们说决策是处置的的关键,而飞行突发事件的处置,时间窗口和高度门槛是关键中的关键,突发情况发生后,飞行员面对的是两条时间相关曲线,一条是故障扩展曲线,失速的发展引发状态的急剧恶化和高度的迅速损失;另一条是飞行员处置曲线,你的正确应对不是可以无限期延续的过程,处置的时间窗口随着高度的降低渐渐关闭。飞行员必须在高度门限到达和时间窗口关闭之前,使这两条曲线尽快重合,完成危险的处置程序。

  为避免失速人类发明了前缘襟翼。前缘襟翼的作用是干扰气流的分离时间。在大迎角时,前缘襟翼向下偏转,减小机翼的迎角,延迟气流分离的时间,从而避免飞机失速。

  谈到失速,还要从人类的早期航空实践说起。在上世纪20年代之前,人类还处于飞行的蹒跚学步阶段,那时,由于飞机技术的落后和人们对飞行知识的缺失,失速所引发的飞行事故司空见惯的,“失速”这种伴随飞行而来的“死亡梦魇”,成为阻碍飞行事业发展的“技术之谜”。随着大工业的蓬勃兴起,航空制造业由早期的作坊式经营演化成大工业的生产模式,在前苏联、欧洲和美国,航空制造公司纷纷成立,并迅速发展成为具有巨大生产能力的大型航空制造企业。高技术与规模生产,飞行实践的不断拓展深化提供了条件,现实的需求驱使人们对飞行进行深入的研究,而如何破解失速之谜就是一个重要的研究方向。

  通过研究人们发现,导致失速的真正原因并不是升力的不足,而是迎角的增加,由迎角超过失速迎角后所引发的飞机失稳,才是发生飞行事故的真正原因。通过研究人们还发现,由于飞机的不同和飞行状态的差异,飞机的失速呈现出不同的机理和形态。弄清楚了飞机失速的原因,就容易找出预防和处置失速的方法,针对机头失速、机翼失速和偏航失速等不同的失速现象,采用推杆、蹬舵等方法可以有效地改出失速从而避免事故的发生。

  导致失速的真正原因并不是升力的不足,而是迎角的增加,由迎角超过失速迎角后所引发的飞机失稳

  上世纪40年代德国人发明了喷气发动机并运用于战斗机,人类航空进入了喷气时代,通过驾驶巨大动力的高速喷气战机,人们发现了现代战机与传统活塞式飞机不同的失速特点,从而推动了失速理论的研究,到上世纪50年代,关于失速的理论发展到了成熟阶段。

  人们了解了失速的相关理论,但在操作层面要对失速进行有效的应对,却是比理论研究本身要复杂得多的问题。这涉及到失速的环境、失速的条件、飞机的状态、可供处置的时间窗口等等,由于真实飞行条件的相对复杂性,飞行员要做出相对正确的应对是一件非常困难的事情。

  上世纪70年代,随着先进飞行控制技术的引入,如何在技术上对失速进行防范和自动改出,成为飞机技术研发的一个重点。迎角监控、迎角限制、反尾旋(螺旋)控制技术的出现,使飞行控制技术进入到“无忧虑”操控的先进水平。然而,飞行控制技术的发展,并不能一劳永逸地解决失速问题,飞行毕竟不是飞行器独立的活动,环境的因素、人的因素依然是影响飞行安全的最关键因素,因此,如何适应环境的复杂性,应对突发风险的复杂多变,依然需要人的智慧和能力。

http://infidelink.com/feijishangshengxiandu/155.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有